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The steady convective diffusion on the surface of a particle of a substance diss- 

olved in a uniform shear flow of viscous flow is considered. The problem of diff- 

usion on a solid sphere and a spherical drop is solved in the approximation of 

the diffusion boundary layer. 
Determination of diffusion afflux of a substance (or heat) on the surface of a mo- 
ving particle is one of the fundamental problems of physicochemical hydrodyna- 

mics related to the theory of combustion, chemical reactors, in particular those 

with suspended layers, to the theory of coagulation and flocculation of disperse 

systems, deposition of aerosols, and in numerous other applications. 

The analytical solutions obtained so far relate only to straight, uniform at infin- 
ity, laminar flows past particles at Iow Reynolds numbers [l - 61. 
Here an approximate analytical expression is derived for the diffusing stream of 
a substance on the surface of a spherical particle in a uniform laminar shear 

flow. Stokes’ approximation derived in [‘7] is used for determining the shear flow 

field. It is assumed that the P&let number is considerable so that the equation 
of convective diffusion can be expressed in terms of boundary layer approxima- 

tion, 

1. Statement of problem, Let us consider a spherical particle carried along 
by a stream of viscous incompressible fluid in a steady uniform shear flow. In an 
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orthogonal Cartesian system of coordinates attached to the particle the velocity distrib- 
ution of the unperturbed flow (at great distances from the particle) is a linear function 
of coordinates vg = (ur) (1.1) 

where r is the radius vector and ~1 is the constant symmetric second-rank tensor which, 
without loss of generality, may be written in the form 

--Q 0 0 

u=. 

I E 

0 -_r 0 (1.2) 
0 0 2u 

For the flow field around the sphere corresponding to the conditions at infinity (1.1) 
and (1.2) the formula derived by Einstein for a solid particle in which the inertial terms 

in the Navier-Stokes equations have been neglected, and extended by Taylor [7] to the 
case of a drop. The stream function in spherical coordinates is of the form 

(1.3) 

where a is the particle radius, U, and vs are the fluid velocity components, and p is 
the ratio of viscosities of the fluid in- and outside the drop (for a solid particle p = w). 

Let us determine the distribution of the diffusible substance (or heat) in the fluid and 
the diffusion stream on the surface of a spherical particle in the flow field (1.3) on the 
assumption that complete absorption of that substance, whose concentration away from 
the sphere is constant, takes place on the particle surface. Assuming that the P&let 

number P = aa2 / D > 1 (n is the coefficient of diffusion), we can neglect the 

diffusive transfer of rhe substance along the particle surface, since it is much smaller 

than that normal to its surface. 
The equation of steady convective diffusion in the boundary layer and the boundary 

conditions can be written in the form 

(1 .‘t) 

r = a, c= 0; rALw, c =- cn 

where c is the concentration. Passing from variables r0 to $C,H, we reduce problem 

(1.4) to the following: ac a+ ac 
-= 
ae 

=- Dsin 3$- (r2F q~ (1.5) 

qJ=o, c=o; q-+x, c=co (1.6) 
To complete the formulation of this problem in new variables we need one more con- 

dition, which can be derived on the following considerations. The stream of fluid along 
trajectories (which we shall call diffusion trajectories) originating at infinity and ending 
at certain points of the sphere surface has the highest concentration of the diffusible sub- 
stance. Hence we must assume that the concentration along these trajectories must be 
equal to that at infinity, i.e., to co. 
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let us consider the flow field (1.3). Obviously all diffusion trajectories are half-lines 
0 = es, a; < r < 00, whose disposition depends on the sign of CC; for a > 0 the 
half-lines occupy the whole of the plane 9 = n / 2 outside the sphere; for oc < 0 there 
are only two diffusion trajectories, namely,the half lines 6 = 0 and 6 = rr,, a < r < 
00. Hence the additional conditions are 

0 = es, c = ca (r > a) 

where f10 is to be chosen so that 

6,=n/2 for a>0 

(1.7) 

(W 

8, = 
i 

0, o<e<n/2 
n, n/2<0<n 

for a< 0 (1.9) 

It should be noted that (1.7) is a limit condition and must be satisfied for P + 00. 
Expansion of r’%?$ / ar in the sphere neighborhood into a series in 9 is used in the 

*solution of problem (1.5) - (1.9), which makes it possible to reduce (1.5) to the equa- 
tion of heat conduction. Since the principal terms of this expansion differ in the case 
of a solid particle from those of a drop, the two cases will be considered separately. 

2. Dlffution on a lolid Bphere. In the neighborhood of the sphere surface 
the stream function (1.3) is of the form 

I# = ~~‘,cQz (r - a)” sina 8 c0se + O ((r - a)$) 

from which we obtain 

P-Z$ = 30”‘a”‘sin 8 ($a cos 8)“‘sgn (a cos 0) + 0 (9) (2-l) 

Confining the expansion to its first term, we substitute (2.1) into (1.5) and introduce 
the new variable 

t = 30”’ D 1 a J”‘a”” A (Cl) sgn & (2.2) 

A (e) = sgn (c0s e) f sin2 8 1 cos 8 l%e (2.3) 
0 

The problem (1.5) - (1.9) reduces now to the equation of heat conduction 

with boundary conditions (1.6) and the initial condition t = 0 and c = c,,, which 
follows from (1.7), (2.2) and (2.3). The solution of this problem is of the form 

4 
c = cg 

i ) 9 
““r-l (+) j exp (- f ~3) &j (q = !2!$) (2.4) 

0 

Formula (2.4) with (2.2) and (2.3) defines the concentration distribution around the 
sphere. The diffusion flux on the sphere is 

)‘==a (2.5) 

By virtue of (2.3), (1.8) and (1.9) the integral A (0) can be expressed as follows: 
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A@) = (;:z;,) o<e<n/z 

J1/2<e<n 
for a>0 

Q (8) - Q (O), o<e<n/2 
A(e) = 1 S(n:-Q-Q(O), n/2<e<n for a< 0 

(2.6) 

(2.7) 

Here 

4s 

Q (0) = 
\ 
’ sin2 8 cm’/’ Bd6=St (0)+ 5 sin 0 cos’la 8 - f E 

Q (0) = r/s (‘/sn~” r-2 (s/J (2.8) 

where E (0 / 2, 1/B . 1s an elliptic integral of the second kind. 
Thickness of the diffusion boundary layer is estimated by formula 

6 = Dc,/j (2.9) 

For 6 + 0 and 6 --t 3t (for a > 0) and for 6 + rc I 2 (for a < 0) parameter 6 + 
00 . This means that compared to the sphere radius, the thickness of the diffusion boun- 

dary layer is not small in the neighborhood of the limit values of 8 , and the method 
of solution used so far is inapplicable in this case. Equations (2.5) - (2.9) imply that 
these neighborhoods tend to decrease with decreasing P&let number. 

It should be noted that their effect on the total flux on the particle is negligible. 
The total diffusion flux on the particle is determined by integrating (2.5) over its sur- 

face with the use of relationships (2.6) - (2.8). Calculations prove that the total flux 
is independent of the sign of a and is defined by 

3. Diffusion 
we have 

By analogy to Sect. 

t = 

z 15.3c, (I a 1 Dza5>‘is (2.10) 

on a drop, By virtue of (1.3) in the vicinity of a spherical drop 

r 2 W F = +j$“a”sin20cos(J+ O(g) (3.1) 

2 we introduce the new variable 

& Dcta4A (e), 
5 

A(8) = 
a 

sin3 0 cos 0 dt3 (3.2) 

Equation (1.5) now reduces to the usual equation of heat conduction whose solution for 
boundary conditions (1.6) and the initial condition corresponding to (1.7) - (1.9) is of 
the form 1 

exp (- q2) drl 
( 

1111 
q= 21/t ) 

(3.3) 

Taking into consideration the definition of 0, in (1.7) - (1.9) and using (3.2), we ob- 
tain i- sin48 for a> 0 

4A (9 = ( _ sin4 6 for a< 0 
(3.1) 

The diffusion flux on the drop surface is 
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3Da 

r==a 
cc0 

fi (I+ PI ‘4 60 1 
“I sins 8 1 cos 8 1 (3.5) 

It is clear that, unlike in the case of a solid sphere, the diffusion flux on a drop is inde- 

pendent of its size. Integrating (3.5) over the surface of the drop and taking into account 

(3.4) and (3.3), we find that the total flux on a drop is independent of the sign of a 
and is given by 

The flow past a particle considered here, as well as the flow past of straight-line 
stream, can be observed only in certain particular pattern of particle motion. An example 
of such flow is provided by the field of laminar flow past a completely entrained by the 

stream particle moving along the axis of a diffuser (or convergent nozzle). Formulas 
(2.10) and (3.6) may be used as input equations for deriving solutions for more complex 

flows. It should be noted that a shear flow of the kind defined by (1.1) may, in the case 
of an arbitrary tensor Q be represented as the sum of three tensors of the kind (1.2) by 
rotating the axes of coordinates. 
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